Quanta offers nice non-specialist pieces on math and the science. Here's one on the triple bubble problem.
snip
...
The bubble problem is simple enough to state: You start with a list of numbers for the volumes, and then ask how to separately enclose those volumes of air using the least surface area. But to solve this problem, mathematicians must consider a wide range of different possible shapes for the bubble walls. And if the assignment is to enclose, say, five volumes, we don’t even have the luxury of limiting our attention to clusters of five bubbles — perhaps the best way to minimize surface area involves splitting one of the volumes across multiple bubbles.
Even in the simpler setting of the two-dimensional plane (where you’re trying to enclose a collection of areas while minimizing the perimeter), no one knows the best way to enclose, say, nine or 10 areas. As the number of bubbles grows, “quickly, you can’t really even get any plausible conjecture,” said Emanuel Milman of the Technion in Haifa, Israel.
...
Comments