Mr Gross was my high school German teacher. He was big on learning language through song and would regularly point out a German word or phrase that might be more appropriate than American English. I wasn't a good student of the language, but he made an impact on me. I still remember and use some of his offerings. Today I saw one of my favorites used in the New York Times - the first time I've seen it used in America.
freudenfreude
Mr Gross described it as the opposite of schadenfreude. It's the joy and delight we feel when someone else finds success - even when, particularly when, their success doesn't involve us. He used to describe the joy he felt when a blind student from our school won a state piano competition. It's an important social glue - a gift to be aware of and take delight in. Mr Gross has been gone for a long time, but thinking about this word turned out to be one of the best things I learned in high school.
This is the original holiday card I sketched back in 1994 along with a bit of midi. I borrowed a Wacom tablet and made a few strokes with the pen - a minute's worth of work. The music took longer. The web was new so I posted it on a server under my desk at work. I didn’t have enough time or imagination to make some new the next year so it returned unchanged. The third year rolled about and I would have forgotten about it, but there were a few dozen requests. From then on it went up every year on or soon after Thanksgiving in honor of the Winter Solstice holidays. It’s a survivor having been hosted on five different servers over the years. For the silver anniversary I though about drawing something new and held a vote. The old card stays - it was unanimous.
It’s a clear winter night as I write these last words. I’ve stepped out to look at the sky. With the stars up above and the blackness of space, I can’t avoid feeling awe.
How could we, Homo sapiens, an insignificant species on an insignificant planet adrift in a middleweight galaxy, have managed to predict how space and time would tremble after two black holes collided in the vastness of the universe a billion light-years away? We knew what that wave should sound like before it got here. And, courtesy of calculus, computers, and Einstein, we were right.
That gravitational wave was the faintest whisper ever heard. That soft little wave had been headed our way from before we were primates, before we were mammals, from a time in our microbial past. When it arrived that day in 2015, because we were listening—and because we knew calculus—we understood what the soft whisper meant.
Steve Strogatz
Chatting with a friend the subject of gravity came up. It isn't a conventional force, but we perceive it as one. Rather it's connected with the curvature of a four-dimensional object called space-time that we happen to live in. The fundamental concepts aren't intuitive and the math that describes it is beyond what you might get in an engineering degree. So how to describe it? There are very high level books and videos that speak in terms of balls on rubber sheets and then jump to oddities like clocks running faster on mountain tops and blackholes. I usually find them a bit fluffy and disappointing. They're bound by assumptions about their audience, so it's not a major criticism. It's just that I was talking with one person and something a bit deeper seemed appropriate. Just how do you find the right level and where do you go from there?
A few years ago Wired produced the 5 Levels series. An expert would try to explain something about a complex subject to five people: a child, a teenager, an undergrad majoring in the same subject, a grad student and, finally, a colleague. My favorite is Donna Strickland on lasers - give it a watch, she's excellent:
I went through something like this just before my Ph.D. thesis defense. I was to explain my thesis work to a group of high school students. At first I thought it would be easy, but that notion quickly evaporated. It turned out to be one of the most difficult and embarrassing things I've done. My advisor stepped in near the end of the talk and summed everything up beautifully. Afterwards he told me if you understand something deeply, you can explain the gist of it to a high school student. That's high on the list of the most important things I've learned.
My friend has a BA in biochemistry and knows about differential equations so I figured I should aim for something between the vague videos and what a senior level general relativity course offers. The more I thought about it I realized it would be best to talk about the history and use a bit of calculus and geometry. I had the advantage of knowing her well and she can stop and ask questions or give a blank look along the way. And afterwards she was going to talk about something where she has serious expertise.
Steve Strogatz is an applied math professor at Cornell. He's written several books including the one the opening quote is taken from: Infinite Powers: How Calculus Reveals the Secrets of the Universe. It's an excellent read that makes no assumption on your mathematical background.1 Thinking about it gave me some hints of how I might proceed.
First why do I have to use math? Why won't words work? The laws of nature obey logic that we can make predictions from. Math, calculus in particular, is a logical calculating tool. In a way it's a prothesis. Math lets us take a bit of logic, write down and perform logical manipulations that far exceed what we can do in our head, and then interpret the results. The logic can be crafted to represent something about the science. Every once and awhile the results can make predictions that can lead to new discoveries, but more often they're used to to solve an enormous range of problems. And why calculus? Much of the underlying structure of nature has been successfully expressed with the corner of calculus known as differential equations. "Why?' is a deeper question. If one encountered an intelligent alien who understood some aspects of how the Universe worked, I suspect they'd use math. I suspect, but it's only my suspicion, that it's deeper than an artifact of how we think about things.
I spent a couple of hours writing. How general relativity came about, a bit on the structure of space-time, what goes into the main equation and how a simple prediction could be calculated. Then about an hour of chatting that left me with two delightful philosophical questions that will probably lead to more discussions as well as her turn to teach me something.
Whatever your expertise, it can be fun to try and explain the gist and maybe even the beauty of it (those can be he same thing) to someone with a very different background. If you're like me you'll fail at first, but eventually you'll get to a point where you can find the right grounding, the right words and perhaps the right drawings or even music (some of you are artists and musicians).
__________
1 By all accounts he's a wonderful teacher and has become a popularizer of math. Among other things he's created a college course at Cornell for people who think they're afraid of math and have generally put it off until their senior year.
On Saturday my niece sent a few photos from her son's robotics competition. While standardized components and a simple scripting language are used, there's a lot of room for learning and creativity. Winning teams spend much of their time modifying the basic design along with moving to more sophisticated programming languages. The basic hardware is quite expensive so many of the groups are sponsored by their schools and sometimes local businesses. It seems like a great way for kids who like to build things and play computer games to learn a bit of engineering and programming. My niece's son isn't interested in math or science at school, but loves to build things. It's a path that has him learning. Given the right advisor there could be a lot of learning. It's also a nice example of using technology as a teaching vehicle.
Sometimes new technologies are seen as a way to cheat. I've read that some teachers worry that language models like GPT-3 will give students easy access to ghost-written essays. Of course there's still the problem of students buying essays from human, but this may be cheaper and easier to get. One can imagine a number of ways to deal with this. A teacher might ask something like "based on the debate Adam and Sally were having last Tuesday, how would you.." Indexicality - pointing to something in the context in which it occurs - is something these language models can't address. Better still may be to focus on critical thinking in the class and test on something that isn't a simple regurgitation. Essays seem like a very uncreative way to teach writing and critical thinking skills. And there will probably be teachers who figure out how to involve language models as a tool to teach creative thinking. That would be a leap similar to using robotics competitions to teach shop, basic engineering and programming skills.
I'd like to see changes in how science and math are taught in high school. Currently there's a push to eliminate areas most students will rarely use. I'd counter that by teaching the subjects in a way to improve critical thinking. Pure math may be a way forward, not the "new math" that crashed and burned in the 60s, but big ideas. It doesn't have to be about formal proofs and calculations (although tools like Mathematica and Maple can be useful experimentation and visualization tools). I've probably belabored it before, but simple topology, infinity, the continuum, maps, abstraction, inference and model building. None of this has to be taught with rigor, but playing with them can open pathways students have never thought about. Sure teach some of the regular math, but it doesn't have to be so repetitive. I'd add probability and risk analysis as well as personal finance. The same with science - do away with memorization and focus on the concepts and how we arrived at them. Of course extra points for making it playful like the robotics competition.
But I'm not a k-12 educator so all of this may be silly.
And for college here's something by the wonderful Woodie Flowers of MIT on changes he'd made to university engineering curriculum and beyond. (Woodie was one of the most innovative teachers at MIT)
a delightful word
Mr Gross was my high school German teacher. He was big on learning language through song and would regularly point out a German word or phrase that might be more appropriate than American English. I wasn't a good student of the language, but he made an impact on me. I still remember and use some of his offerings. Today I saw one of my favorites used in the New York Times - the first time I've seen it used in America.
freudenfreude
Mr Gross described it as the opposite of schadenfreude. It's the joy and delight we feel when someone else finds success - even when, particularly when, their success doesn't involve us. He used to describe the joy he felt when a blind student from our school won a state piano competition. It's an important social glue - a gift to be aware of and take delight in. Mr Gross has been gone for a long time, but thinking about this word turned out to be one of the best things I learned in high school.
Posted at 03:25 PM in education, general comments | Permalink | Comments (0)
| Reblog (0)